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ABSTRACT

The number of possible combinations of soils, crops, and weather that need to be examined
while developing fertilizer and other input recommendations for precision farming suggests
that models of crop growth should be quite useful. However, it is not yet known whether
the models are suitably accurate, nor are there sufficient site-specific inputs for most
situations. This study attempted to determine how spatially precise soil characteristics
needed to be if CERES-Maize model results were to be descriptive of spatial observations.
Both V3.1 and V3.5 were examined. Detail of inputs ranged from the usual soil survey
information for typical pedons, up to field-observed soil, infiltration, and crop character-
istics. In this study, model performance overall was disappointing and was not signifi-
cantly improved by increasing the level of detail.

INTRODUCTION

Crop growth models are such an attractive tool for testing scenarios that they have
increasingly attracted attention within the site-specific farming community. Several
model/GIS combinations can ease the tedium of managing data files and running models,
yet modeling success for site-specific agriculture remains mixed. The most-commonly
cited reason for poor performance of models is the lack of site-specific inputs. Collecting
such data at spatial sampling densities useful for site-specific modeling is quite labor-,
time-, and cost-intensive. Until instruments or models to provide such information become
available, modelers must compromise among conflicting objectives that include accuracy,
availability of data, and cost of acquiring data not previously available. The question
remains, how site-specific must the inputs be for the model to provide useful results?

Using models for scenario testing and prediction in site-specific agriculture requires two
important conditions. These are suitable accuracy, which has been discussed elsewhere
{Sadler and Russell, 1997), and large quantities of site-specific soil, crop, and weather
information. Unavailability of the latter is why most studies reporting success using
models for simulating spatial variability in yield or other crop responses have used some
kind of parameter fitting (Batchelor and Paz, 1998; Barnes ef al., 1998; Braga and Jones,
1998; Sudduth ez al., 1998). There appears to be no other way to achieve explanatory
model results with currently available data. However, fitting the model parameters based
on minimizing variance from observed results also requires two conditions. First is that
the model behave appropriately.. Second is that no important inputs are left out of the
process. For optimum performance of the fitting procedure, all important inputs, save the
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one(s) being fitted, must be supplied with appropriate site-specilic vatues.

This raises the question of which inputs are important. One would hope that research could
identify these parameters on small-plot or limited-scope experiments. The process
becomes a parallel sensitivity analysis involving both model runs and field observations.
Ongoing modeling studies in the US Coastal Plains Center Site-Specific Farming Project
provided an opportunity to study the performance of the CERES-Maize model (Tsuji, et
al., 1994) under a series of model inputs that were incrementally more site-specific
regarding soil characteristics. The model sequence was compared with data collected
during the 1993 corn season, which suffered a severe drought (Sadler et al., 1995a).

METHODS

A series of six model runs was designed, starting with the conventional soils data available
from the usual soil surveys (designated Level 1), progressing down the spatial scale to quite
intensive field measurements (Level 6). These runs were conducted with CERES-Maize,
which is a daily-time-step model of corn growth and yield. Runs were made with both
V3.1 (Tsuji, et al., 1994) and its update, V3.5 (Hoogenboom et al., 1998). To evaluate the
changes between versions, a preliminary comparison of yield results for a 7-year corn yield
dataset (1985, 1986, 1988, 1992, 1993, 1995, 1997) from Florence, SC, USA, was made
as well as performing the detailed analyses of the 1993 dataset.

Measurements were taken during the 1993 crop season, preliminary results for which are
given in Sadler et al. (1995a). Soil water contents were available from time-domain
reflectometry (TDR) measurements at eight sites with four soil types. Measurements of
phenology, LAI, biomass, yield components, and yield, were also available at those sites.

Level 1. The normal starting point for modeling studies contrasting soil types is the data
available from typical soil descriptions, supplemented where possible with State Experi-
ment Station bulletins. For this reason, our Level 1 estimates of soil parameters were
extracted from typical descriptions for four soil map units (Goldsboro-GoA, Norfolk-NkA,
Bonneau-BnA, and Coxville-Cx). The descriptions were taken from the 1:1200 soil survey
(USDA-SCS, 1986) and from bulletins describing Coastal Plain soils in South Carolina
(Peele, er al., 1970) and Georgia (Long, et al., 1969). The physical characteristics for each
of the four soil map units are listed in Table 1.

Level 2. The most-apparent and most-easily observed deviation from the typical pedon
description is the thickness of the horizons. Therefore, Level 2 involved adjusting layer
thickness to match specific profiles, retaining typical descriptions of the layers. The depths
of the profiles were measured at each of eight sites where collateral data were collected
during the 1993 corn season. The changes from Level 1 to Level 2 are listed in Table 2.

Level 3. Variations in soil physical properties, including texture and the associated hy-
draulic characteristics, have been suspected as causing significant variation in water
relations. Level 3 added the adjustment of lower and upper limits of water holding capac-
ity to estimates obtained both from field TDR measurements and from laboratory water
retention curves obtained on selected soils. The values used are listed in Table 3.
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TABLE 1. Characteristics for the 4 typical soils. Abbreviations are depth to bottom of
layer(SLB), lower limit of available water (SLLL), drained upper limit (SDUL), saturation
water content (SSAT), and bulk density(SBDM).

GoA SLB  SLLL SDUL SSAT SBDM NkA SLB  SLLL SDUL =~ SSAT SBDM
Layer cm - - - g/cm3 Layer cm - - - g/cm3
1 9 0062 0162 0270 1.54 1 9 0054 0.123 0260 ~ 152
2 18 0.058 0.168 0273 1.54 2 17 0052 0.127 0.261 1.52
3 28 0.059 0.181 0.270 1.81 3 30 0.061 0.162 0.260 1.71
4 38 0058 0.182 0.270 1.81 4 51 0162 0.271 0.353 1.42
5 64 0179 0293 0.354 1.67 5 81 0175 0.283 0.332 1.42
6 81 0232 0346 0.366 1.52 6 122 0.173 0.283 0.332 1.42
7 102 0.241 0.352. 0.362 1.52 7 132 0171 0.283 0.332 1.42
8 127 0.241 0352 0.362 1.52 8 165 0.171 0.283 0.332 1.42
9 173  0.241 0.352 0.362 1.52 9 199 0171 0283 0332 1.42
10 200 0241 0352 0.362 1.52
BnA SLB  SLLL SDUL SSAT SBDM Cx SLB SLLL SDUL SSAT SBDM
Layer cm - - - glem® Layer cm - - - glem®
1 12 0.045 0.121 0277 1.50 1 10 0.137 0.254 0.336 1.57
2 25 0.043 0125 0.279 1.50 2 20 0132 0254 0.337 1.57
3 40 0.047 0.142 0.250 1.69 3 33 0.130 0254 0.337 1.67
4 61 0046 0.143 0.251 1.69 4 64 0220 0.341 0.386 1.60
5 76 0133 0.244 0.311 1.65 5 76 0220 0.341 0.386 1.53
6 97 0150 0260 0.319 1.60 6 108 0.220 0341 0.386 1.53
7 117 0150 0260 0.319 1.60 7 132 0.221 0.342 0.386 1.53
8 144 0183 0293 0.344 1.60 8 162 0.240 0.356 0.395 1.53
9 172 0183 0293 0.344 1.60 9 192 0240 0356 0.395 1.53
10 200 0.183 0.293 0.344 1.60 10 222 0240 0356 0.395 1.53

TABLE 2. Changes in horizon thickness from Level 1 to Level 2. Depth is to bottom of
the layer.

Depth Depth Depth Depth Depth Depth
Layer cm cm cm Layer cm cm cm
Typical Site 1 Site 2 Typical Site 3 Site 4
GoA Level 1 Level 2 Level 2 NkA Level 1 Level 2 Level 2
1 9 15 1 1 9 14 13
2 18 30 23 2 17 28 25
3 28 50 41 3 30 34 50
4 38 75 60 4 51 56 75
5 64 100 100 5 81 78 100
6 81 127 127 6 122 100 122
7 102 173 173 7 132 122 132
8 127 200 200 8 165 132 165
9 173 9 199 165 199
10 200 10 199
Typical Site 5 Site 6 Typical Site 7 Site 8
BnA Level 1 Level 2 Level 2 Cx Level 1 Level 2 Level 2
1 12 15 16 1 10 16 10
2 25 30 32 2 20 32 25
3 40 48 48 3 33 48 40
4 61 66 64 4 64 64 59
5 76 83 82 5 76 82 78
6 97 100 100 6 108 100 100
7 117 117 117 7 132 132 132
8 144 144 144 8 162 162 162
9 172 172 172 9 192 192 192
10 200 200 200 10 222 222 222
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TABLE 3. Soil physical characteristics changed from Level 2 to Level 3. Definitions as
in Table 1.

SLLL SDUL  SSAT SLLL  SDUL  SSAT SLLL  SDUL  SSAT
GoA Level 2 Level 3 Site 1 Level 3 Site 2
0.062 0.162 0.270 0.060 0.165 0.270 0.030 0.145 0.270
0.058 0.168 0.273 0.050 0.140 0.273] 0.055 0.123 0.273
0.059 0.181 0.270} 0.050 0170 0.270{ 0.055 0.155 0.270
0.058 0.182 0270 0.170 0300 0.310] 0050 0.150 0.270
0179 0293 0.354] 0.200 0350 0354 0270 0370 0.380
0232 0346 0366] 0232 0346 0366 0232 0.346  0.366
0.241 0.352 0.362] 0.241 0.352 0.362| 0.241 0.352 0.362
0.241 0.352 0.362| 0.241 0.352 0.362 0.241 0.352 0.362
NkA Level 2 Level 3 Site 3 Level 3 Site 4
0.054 0123 0260/ 0.053 0180 0260 0030 0.175 0.260
0.052 0.127 0.261 0.035 0.133 0.261 0.073 0.185 0.261
0.061 0.162 0.260 0.068 0.185 0.260 0.195 0295 0.305
0.162 0.271 0.353] 0195 0.295 0.353 0.230 0350 0.355
0.175 0283 0332 0168 0280 0.332 0.240 0.350 0.355
0.173 0283 0.332 0.233 0348 0.350] 0.173 0.283 0.332
0.171 0283 0.332 0.171 0.283 0.332 0.171 0.283 0.332
0.171 0.283 0.332 0.171 0.283 0.332 0.171 0.283 0.332
0.171 0.283 0.332| 0.171 0.283 0.332 0.171 0.283 0.332
0.171 0283 0.332] 0.171 0.283 0.332
BnA Level 2 Level 3 Site 5 Level 3 Site 6
0.045 0.121 0.277 0.048 0.145 0.277| 0.021 0.159 0.277
0.043 0.125 0.279 0.055 0.135 0.279 0.015 0120 0.279
0.047 0142 0250 0.045 0125 0.250] 0029 0.200 0.250
0.046 0.143 0.251 0.070 0160 0.251 0.070 0.213 0.251
0.133 0244 0.311 0.180 0270 0.311 0.150 0.287 0.311
0.150 0260 0.319) 0.225 0350 0.360 - 0.180 0290 0.319
0150 0260 0.318] 0.150 0260 0.319 0150 0260 0.319
0.183 0.293 0.344 0.183 0.293 0.344] 0.183 0.293 0.344
0.183 0293 0.344| 0.183 0293 0.344| 0.183 0293 0.344
0.183 0.293 0.344| 0.183 0.293 0.344] 0.183 0.293 0.344
Cx Level 2 Level 3 Site 7 Level 3 Site 8
0.137 0254 0.336 0.035 0.215 0.336] 0.065 0.205 0.336
0.132 0254 0.337 0.025 0203 0.337] 0.075 0205 0.337
0.130 0.254 0.337] 0.048 0.226 0.337 0.018 0.196 0.337
0.220  0.341 0.386f 0.040 0.23¢ 0.386 0.050 . 0.190 0.386
0.220 0.341 0.386f 0.155 0.295 0.388 0.080 0.240 0.386
0.220 0.341 0.386] 0.200 0240 0.386| 0.240 0400 0410
0.221 0.342 0.386] 0.221 0.342 0.386| 0.221 0.342 0.386
0240 0356 0.395 0240 0356 0.395| 0240 0356 0.395
0240 0356 0.395] 0240 035 0.395| 0240 0356 0.395
0.240 0.356 0.395 0240 0356 0395 0.240 0.356 0.395
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Level 4. Field observations of runoff when modeled runoff was zero suggested that the
modeled infiltration needed improvement. Stone and Sadler (1991) examined curve
number and Green-Ampt (Green and Ampt, 1911) infiltration models, observing that
approximately half the variance between observed and modeled yield could be explained
by differences in infiltration. Thus, Level 4 included field observations of infiltration, as
calculated from the TDR measurements (Haan et al., 1994; Schwab er al., 1993).
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Levels 5 and 6. For rainfed agriculture, variable-rate adjustment of seeding rate has been
proposed as a way to manage limited within-season water supplies. Consequently,
sensitivity to plant population and producing plant population was examined. Level 5
included field observations of plant population at each site, and Level 6 limited the
population to plants producing ears.

RESULTS AND DISCUSSION

Prior experience with CERES-Maize resulted in simulations of corn yield that were higher
than observed yields for low-yielding years both in our experience (Sadler et al., 1998) and
other’s (Batchelor ef al., 1998). The runs in Sadler et al. (1998) were conducted using crop
parameters, particularly maximum kernel number, developed locally. However, the V3.5
genotype file contained an entry for the cultivar used (Pioneer 3165) that, when run with
V3.1, significantly improved the estimate of the long-term mean. Therefore, all runs for
both versions used the new crop parameters.

The immediately obvious result from the comparison between versions was that for the
combinations of soil, crop, and weather files used, Version 3.5 simulated corn yields
approximately 1.5 Mg/ha lower than did Version 3.1 (see Figure 1). Version 3.5
approximated observed yields only in the lowest-yielding years. At the present, we are
unable to explain the reasons for this result.

Yield results from Level 1 runs (Figure 2) met expectations developed in several similar
simulation experiments using soil characteristics from typical pedon descriptions (Sadler
et al., 1995b; Sadler et al., 1998). However, results from the entire series of increasingly
site-specific parameters were disappointing (Figures 2 and 3 for Levels 1-4). Results from
Levels 5 and 6, not shown, were indistinguishable from those of Level 4, reflecting
insensitivity to plant population in the ranges observed.

The sequence of simulated yield shows that very little of the measured variance is captured
by the simulation, at any level of specificity of parameters. In general, the V3.5 model
estimates the field mean reasonably well for Levels 1-3, and underestimates the mean for
Level 4, when known errors in infiltration are corrected. A review of the results for seed
weight illustrates the reason for the drop in yield for Level 4, where seed weight for V3.5
was 50% less than for V3.1. Interestingly, although V3.1 simulated higher grain numbers
than V3.5 for Levels 1-3, the relative position reversed for Level 4. In general, V3.5
performed better than V3.1 in estimating grain number for all input levels. It also
performed equal to or better than V3.1 for maximum LAIL

Increasing site-specificity of parameters did not increase the predictive capability of the
model for the explanation of within-field, or soil-to-soil, variability, despite some improve-
ment in the estimate of the mean. In general, the variance in simulated results was much
less than the variance in observed results. This holds for multiple-year simulations on the
complete data set as well (Figure 1). Several reasons for this observation can be proposed,
and there is value to this speculation for modeling for precision agriculture.
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FIGURE 1. Corn yield as simulated by CERES-Maize V3.1 (triangles) and V3.5 (circles)
as a function of the mean measured yield for the soil map unit, for all soils and all years
(1985, 1986, 1988, 1992, 1993, 1995, 1997) at Florence, SC. Lines indicate linear
regression through values for each model version (r*<0.04).

First, modelers can make a case that the soil parameters are not yet sufficiently repre-
sentative. This could be either that the parameters were not correct, or that the wrong
parameters were chosen. Either way, variation in the soils would not have been captured
in the parameters. Theoretically, if the parameters are not representative, the model could
be perfect yet still produce the results shown. However, the bulk of all modeling with
daily-time-step models has been conducted with specificity approximating that shown in
our Level 1. The work involved in producing Level 3 information, let alone Level 4, is
cost-prohibitive for even modest use in precision farming. Further, the model has been
demonstrated to be relatively insensitive to the parameters assumed constant in the current
exercise. So, if input parameters are yet more difficult to obtain, such models would be of
limited utility for precision farming.

Second, empiricists could argue that the models are not sufficiently accurate to estimate
within-field variance. This could also be true. In general, results obtained by the authors
and others have indicated that the CERES-Maize model is a better estimator of the field
mean than of within-field variance. Most models were designed to simulate much larger
differences in cultivars, soils, and weather than commonly exists within a field. As
discussed by Sadler and Russell (1997), models are particularly taxed by requirements of
precision farming. Many parameters assumed constant in the development of the model
(e. g, canopy temperature) have been shown to be extremely variable within a field (Sadler
et al., 1995b). Other difficulties accrue for 1-D models in cases with 3-D variation.
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However, a voice of moderation would observe that the real answer likely lies somewhere
in between, noting that only in the last few years have studies used models for precision
agriculture. For example, the CERES-Maize model lacks structures to account for within-
field variation in air and canopy temperature, as well as for certain soil characteristics, any
or all of which may be important in this new research area. Further, within-field variation
in several parameters was not examined. For our purposes, we will continue to expand our
list of candidate parameters to improve model applicability, including use of objective
parameterization to place bounds on the soil characteristics not measured. Finally, we
encourage researchers to continue to work with the developers of CERES-Maize and other
models to improve the utility of these tools for the purposes of precision agriculture.

CONCLUSIONS

Increasing the level of detail regarding the site-specificity of the soil characteristics did not
materially improve the fit between the measured and simulated values. From the
information available, it cannot be determined whether the cause for the performance
stemmed from unrepresentative input parameters or limited model structure.

REFERENCES

Barnes, E. M., Baker, M. G., Pinter, P. J., Jr. (1998) Integration of remote sensing and
crop models to provide decision support for precision crop management. Pro-
ceedings I5! International Conference Geospatial Information in Agriculture &
Forestry, ERIM Int’l, Inc., Ann Arbor, MI, USA, 1,211-213.

Batchelor, W. D., Paz, J. O. (1998) Process-oriented crop growth models as a tool to
evaluate spatial yield variability. -Proceedings 15! International Conference
Geospatial Information in Agriculture & Forestry, ERIM Int’l, Inc., Ann Arbor,
MI, USA, 1, 198-205.

Braga, R. P., Jones, J. W. (1998) Spatial parameter estimation for a field-scale surface
hydrology model. Proceedings 15¢ International Conference Geospatial Infor-
mation in Agriculture & Forestry, ERIM Int’l, Inc., Ann Arbor, MI, USA, II, 105-
112.

Haan, C. T., Barfield, B. 1., Hayes, J. C. (1994) Design Hydrology and Sedimentology for
Small Catchments. Academic Press, San Diego, USA.

Hoogenboom, G., Wilkens, P. W., Thornton, P. K., Jones, J. W., Hunt, L. A., Imamura, D.
T. (1998) Decision Support System for Agrotechnology Transfer v3.5 Volume 4-1.

International Consortium for Agricultural Systems Applications.

Green, W. A., Ampt, G. A. (1911). Studies on soil physics, I. The flow of air and water
thru soils. J. of Agric. Sci., 4:1-24.

559



Long, F. L., Perkins, H. F., Carreker, J. R., Danniels, J. M. (1969) Morphological,
Chemical, and Physical Characteristics of Eighteen Representative Soils of the
Atlantic Coast Flatwoods. Research Bulletin 59, USDA-ARS and UGA, College
of Agriculture Experiment Stations, Athens, GA, USA.

Peele, T. C., Beale, O. W., Lesesne, F. F. (1970) The Physical Properties of some South
Carolina Soils. Technical Bulletin 1037, SC Agricultural Experiment Station,
Clemson Univ., Clemson SC and USDA-ARS.

Sadler, E. ., Bauer, P. J., Busscher, W. J. (1995a) Spatial corn yield during drought in the
SE Coastal Plain. In Site-specific Management for Agricultural Systems. Robert,
P. C.,Rust, R. H., Larson, W. E. (eds.) Madison, WI, USA: ASA/CSSA/SSSA, pp.
365-382.

Sadler, E. J., Busscher, W. J., Karlen, D. L. (1995b) Site-specific yield histories on a SE
Coastal Plain field. In Site-specific Management for Agricultural Systems. Robert,
P.C., Rust,R. H., Larson, W. E. (eds.) Madison, WI, USA: ASA/CSSA/SSSA, pp.
154-166 ’

Sadler, E. J., Russell, G. (1997) Chapter 4. Modeling crop yield for site-specific man-
agement. In The State of Site-Specific Management for Agriculture. Pierce, F. J.,
Sadler, E. J. (eds.) Madison, WI, USA: ASA. pp. 69-79.

Sadler, E. I., Busscher, W. J., Stone, K. C., Bauer, P. J., Evans, D. E., Millen, J. A. (1998)
Site-specific modeling of corn yield in the SE Coastal Plain.  Proceedings 1 st
International Conference Geospatial Information in Agriculture & Forestry, ERIM
Int’l, Inc., Ann Arbor, MI, USA, 1,214-221.

Schwab, G. O., Fangmeier, D. D., Elliot, W. J., Frevert, R. K. (1993) Soil and Water
Conservation Engineering. Fourth Edition. New York, NY, USA: John Wiley and
Sons, Inc.

Stone, K. C., Sadler, E. J. (1991). Runoff using Green-Ampt and SCS curve number
procedures and its effect on the CERES-Maize model. Paper No. 91-2612, St.
Joseph, MI, USA: ASAE.

Sudduth K. A., Fraisse, C. W., Drummond, S. T., Kitchen, N. R. (1998) Integrating spatial
data collection, modeling, and analysis for precision farming.  Proceedings 15!
International Conference Geospatial Information in Agriculture & Forestry, ERIM
Int’l, Inc., Ann Arbor, MI, USA, II, 166-173.

Tsuji, G. Y., Uehara, G., Balas, S. (eds). (1994) DSSAT v3. University of Hawaii,
Honolulu, Hawaii, USA. .

USDA-SCS. (1986) Classification and correlation of the soils of Coastal Plains Research

Center, ARS, Florence, South Carolina. Ft. Worth, TX, USA: South National
Technical Center, USDA-SCS.

560





